Alternative Fatigue Cracking Modes for Airfield Rigid Pavement Design

Jeffery Roesler, Ph.D., P.E.
Associate Professor

Francisco Evangelista Junior
Graduate Research Assistant

Department of Civil and Environmental Engineering
University of Illinois Urbana-Champaign

January 29th, 2008
Overview

- Introduction and Motivation
- Objectives
- Methodology
 - scenario’s description
 - factorial analysis
- Results
 - countour plots
 - load position influence graphs
 - factorial results
- Conclusions
- Current and Future Work
Introduction and Motivation
Introduction and Motivation

- Airfield rigid pavement design is based on:
 - FE analysis of individual gear loads;
 - Critical tensile stress at the bottom;
 - No thermal loads (flat slab condition);

- Dual: B727, B737
- Dual Tandem: B747, B757, B767
- Triple Dual Tandem: B777, A380
Introduction and Motivation

• Top-Down cracking observations from full-scale tests:
 • FAA’s NAPTF at Atlantic City (USA)
 • A-380 PEP tests at Toulouse (France)

• Certain combined load and slab geometry situations.
Introduction and Motivation

• FAA’s NAPTF Tests (CC2 - MRG)

Tests and observed cracks in CC2 tests (Hayhoe and Garg, 2006)

• Tridem and tandem gear loading
FAA CC2 Failure Cracks

All Sections

(a) Test Item MRC
(b) Test Item MRG
(c) Test Item MRS

Brill et al. 2006
Introduction and Motivation

- A-380 Pavement Experimental Programme - Rigid Phase (France)

Tests and cracks in PEP (Fabre et al. 2005)
Introduction and Motivation

- California Highway Cracking

Hiller and Roesler (2005)
Objectives
Objectives

- Identify key aircraft loading locations on rigid pavements which induce high top tensile stresses (ratio between top and bottom);
 - *NO CURLING*

- Investigate the quantitative effect of several parameters and their interaction on predicted critical tensile stresses and positions:
 - Slab Length: L
 - Load type: individual gear versus full aircraft;
 - Radius of Relative Stiffness, \(ℓ - (h,k) \)
 - Load Transfer Efficiency (LTE) between slabs:

\[
LTE = \frac{\delta_{\text{unloaded}}}{\delta_{\text{loaded}}} \times 100
\]
Methodology
Methodology

Scenario’s description

A system of 4x4 slabs were simulated with ILLISLAB (Khazanovich, 1994) under different load conditions:

Case I: Individual (single) gears for the A-380 (TDT), B-747 (DT), B-777 (TDT), and MD-11 (D) aircraft were positioned over the central slab so that all gears traversed a slab in both the x- and y- directions.

• Case II: All main landing gears (full aircraft) for the A-380, B-747, B-777, and MD-11 aircraft were also positioned over the central slab so that all gears traversed the slab in both the x- and y- directions.

The following properties were constant for all simulations:
- Concrete elastic properties: $E_c = 4.5 \times 10^6$ psi and $\nu = 0.15$
- Tire contact pressure: $p = 200$ psi
- Tire geometry: length = width = 15 in.
- Wheel load per tire: $P = 45,000$ lbs
Load Type: Single Gear (e.g. A-380)

- Single gear traverses an inner plate

420 simulated positions

A-380
Load Type: Full Aircraft (e.g. A-380)

- Full Aircraft traverses an inner plate

588 simulated positions

A-380
Factorial Analysis

A 2^4 factorial design (4 factors at 2 levels each one) were used to investigate the effect of the below factors as well their interaction for the critical stress value and location:

<table>
<thead>
<tr>
<th>Level</th>
<th>L (inches)</th>
<th>t (inches)</th>
<th>LTE (%)</th>
<th>Load configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (-)</td>
<td>240</td>
<td>57</td>
<td>85</td>
<td>Single gear</td>
</tr>
<tr>
<td>High (+)</td>
<td>300</td>
<td>89</td>
<td>0</td>
<td>Full aircraft</td>
</tr>
</tbody>
</table>

• Factorial design (geometric analogy):

Definition of Main and Interaction Effects:

\[E_f(A) : \Delta \text{ of averages at 2 levels (- and +) of A;} \]
\[E_f(AB) : \Delta \text{ of averages of A at 2 levels (- and +) of B;} \]
\[E_f(ABC) : \Delta \text{ of averages of AB interaction at 2 levels (- and +) of C} \]

Montgomery (1997)
Analysis procedures

I – Pre-process and run all load positions in ILLISLAB for a given configuration

II – Run load cases from step I and for all configurations with ILLISLAB

III – Post-processing the results in MatLab for each load case at each configuration

IV – Create data structure and construct the load influence graphs with MatLab

- create mesh
- vary the load position

- factorial design
- vary L, ℓ, and LTE

- read the output files;
- create contour plots.

- Maximum stress result from all cases @ each configuration to factorial analysis
Results
Top to Bottom Stresses (t/b)

- Maximum tensile stresses were on the slab bottom for all single gear simulations;
- Single gear results: TDT of the B-777 and A-380 gear produced the highest ratios;
- Higher t/b stress ratios for no LTE;
- Full aircraft results: t/b ratios increased significantly for almost all aircrafts, but the B-777;
- A-380 induced similar tensile stresses at the top and bottom when LTE=0%.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>A-380</th>
<th>B-747</th>
<th>B-777</th>
<th>MD-11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>SCI-IIa</td>
<td>0.49</td>
<td>0.52</td>
<td>0.48</td>
<td>0.47</td>
</tr>
<tr>
<td>SCI-IIb</td>
<td>0.68</td>
<td>0.73</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>SCI-IIIa</td>
<td>0.45</td>
<td>0.47</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>SCI-IIIb</td>
<td>0.62</td>
<td>0.61</td>
<td>0.62</td>
<td>0.60</td>
</tr>
<tr>
<td>SCI-IVa</td>
<td>0.47</td>
<td>0.55</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>SCI-IVb</td>
<td>0.66</td>
<td>0.77</td>
<td>0.59</td>
<td>0.66</td>
</tr>
<tr>
<td>SCI-Va</td>
<td>0.47</td>
<td>0.51</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>SCI-Vb</td>
<td>0.65</td>
<td>0.74</td>
<td>0.61</td>
<td>0.62</td>
</tr>
<tr>
<td>SCIa</td>
<td>0.66</td>
<td>0.50</td>
<td>0.56</td>
<td>0.53</td>
</tr>
<tr>
<td>SCIb</td>
<td>0.95</td>
<td>0.74</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>SCI-IIIa</td>
<td>0.67</td>
<td>0.56</td>
<td>0.47</td>
<td>0.51</td>
</tr>
<tr>
<td>SCI-IIIb</td>
<td>1.04</td>
<td>0.71</td>
<td>0.61</td>
<td>0.65</td>
</tr>
<tr>
<td>SCI-IVa</td>
<td>0.67</td>
<td>0.51</td>
<td>0.58</td>
<td>0.51</td>
</tr>
<tr>
<td>SCI-IVb</td>
<td>0.98</td>
<td>0.72</td>
<td>0.82</td>
<td>0.78</td>
</tr>
<tr>
<td>SCI-Va</td>
<td>0.71</td>
<td>0.57</td>
<td>0.49</td>
<td>0.55</td>
</tr>
<tr>
<td>SCI-Vb</td>
<td>1.00</td>
<td>0.75</td>
<td>0.78</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Top σ_{xx} contour plot results

$LTE_x = LTE_y = 85\%$

Single Gear

A380: Critical Top Tensile (σ_x) -- Critical Bottom Compressive (σ_x)

- $\sigma_x^\text{max} = 280$ psi
- $X = 660; Y = 600$

- LTEx = LTEy = 85%

- SCIIa
 - $h = 16$ inches
 - $p = 200$ psi
 - $Ec = 4.5 \times 10^6$ psi
 - $k = 150$ psi/ inches
 - LTE = 85%
Load Position Influence Graphs

White "X" indicates the critical CG position for the gear configuration.

Contours indicate the ratio between the σ_t top stress induced by the load (CG) at that position and the critical stress value.
Load Position Influence Graphs – Single gear

A-380 (TDT)

Critical top stress at the adjacent slab (~NAPTF’s case)

- LTE=85%
- t/b ratios around 0.48

- LTE=0%
- t/b ratios around 0.67
Load Position Influence Graphs – Single gear

B-747 (DT)

Critical top stress at the adjacent slab (NAPTF’s case)

- t/b ratios around 0.45.
- t/b ratios around 0.60.

LTE=85%

LTE=0%
B-747: $L = 300''$ and LTE=0\% (top stress)

- t/b ratio=0.70.

Critical stress at longitudinal joint \rightarrow transverse or corner cracking

Another alternative critical load position (CG)
Load Position Influence Graphs – Full A/C

A-380: \(L = 300'' \) and LTE = 0%

- \(t/b \) ratio = 1.04.

Critical stress at transverse joint → longitudinal cracking at mid-slab

Another alternative critical load position (CG)
Load Position Influence Graphs – Full A/C

A-380: \(L = 240'' \) and LTE=0%
\(\ell = 89'' \)
\(t/b \) ratio=1.00

Critical stress at transverse joint → longitudinal cracking at mid-slab

Other alternative critical load position (CG)
Load Influence Graphs – Full A/C

MD-11: $L = 300''$ and $LTE=0\%$

- t/b ratio=0.84.

Critical stress at transverse joint \rightarrow longitudinal cracking at mid-slab

$\ell=89''$
Load Influence Graphs – Full A/C

MD-11: \(L = 240'' \) and LTE=0%

- t/b ratio=0.86.

Critical stress at transverse joint → longitudinal cracking at mid-slab
Factorial results (bottom tensile stress)

Few significant 2nd order interactions:
- LTE-Load: for all A/C;
- L-\ell: for A-380 only

- LTE affects the Bottom tensile stress for all A/C;
- Full gear has little effect on bottom stresses

No need to determine critical positions
Factorial results (top tensile stresses)

Few significant 2nd order interactions:
- LTE-Load: for all A/C;
- L-Ł: for A-380 only

- LTE highly affects the Top tensile stress for all A/C;
- Full gears didn’t affect the B-777 results;
- L is not so important to Top Tensile
Factorial results (t/b stress ratio)

Same trends as in Top Tensile Stress

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>t/b ratio</th>
<th>E(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-380</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions
Conclusions

- This initial finite element analysis using ILLISLAB has shown the consideration of the full aircraft gear is necessary if the top tensile stresses are going to be accurately predicted;

- Top and bottom tensile stress ratio higher for **full Aircraft analysis**
 - In most cases, critical top tensile stresses created when gears straddle multiple slabs
 - ↑ LTE then top to bottom tensile stress ratio decreases
 - The critical top tensile stress mostly occurred at transverse joint \(\rightarrow\) **longitudinal cracking** (e.g., NAPTF and Airbus tests)

- The analysis showed that the A-380 and the MD-11 induced higher **top tensile stress** values relative to B-777 and B-747; but B-747 and B-777 had much greater **bottom tensile stresses**.
Conclusions

- The top/bottom ratios are significantly increased when the Load Transfer Efficiency (LTE) between adjacent slabs approaches zero.

- The factorial analysis also showed that
 - LTE highly affected the critical top tensile stress
 - Full aircraft assumptions do not affect bottom tensile stress
 - Slab size affect more the critical response position than its magnitude for this analysis.

- A-380 only a/c with t/b stress > 1.0 without curling but does not necessarily produce most critical stress of the 4 a/c analyzed!

Top Tensile stresses are an interaction of the of slab configuration, full gear geometry, and load levels.
• Three dimensional analysis of the critical cases;

• Completion of the B-737 case

• FAA suggestions or comments -
 • Analyze only other aircraft with potential for t/b ratios ~1.0
Stress/Deformations
(critical responses)

Environmental and built-in effects:
- creep (t),
- $\varepsilon_{sh}(t)$,
- $\Delta T(t, T)$

Determine effective curling:
moisture + temperature effects:
- $T_{eq}(z) = A +Bz +Cz^2 +Dz^3$

ICON (Prof. Lange)

Load + Curl Cases (Prof. Roesler)

Apply gear types for different positions to identify critical responses

Curling + Loading - 2008 Proposed
Fatigue Crack Growth Prediction for Concrete Slabs

Principal Investigators:
Jeffery Roesler, Ph.D., P.E.
Surendra Shah, Ph.D.

Graduate Research Assistants:
Cristian Gaedicke
Notched Beam/Slab Tests
Flexural Capacity of Airfield Rigid Pavements

October 2007 Project

- **Concrete properties**
- **Cohesive law**
- **Cohesive Elements are located in Slab FEM model**
- **Cohesive Finite Element**

Concrete properties

- Cohesive Elements

Cohesive law

- Cohesive Elements are located in Slab FEM model

Cohesive Finite Element
Acknowledgements

Research Grant Number: 95-C-001